Tile design test results

<u>Task:</u> study different designs of the ACD scintillating tile for the optimization.

All scintillators tested are 1cm thick, readout by Hamamatsu R1635

1. Fiber spacing effect.

All tiles are BICRON, TYVEK wrapped, multiclad fibers

Fiber spacing	Light yield, relative units
2 cm	15.9
1 cm	18.1
0.5 cm	22.0
0.25 cm	20.2
Continuous	23.3

2. Wrapping effect

Wrapping	Tile	Relative light
		yield
TYVEK	BICRON, 5mm fiber	22.0
	spacing, multiclad fibers	
TETRATEC		24.5
Poliester	‹‹ ‹‹	20.0
TYVEK	ElJen scintillator, 10mm	15.3
	fiber spacing, single clad	
	fibers	
TETRATEC	" "	17.2

Conclusion – TETRATEC gives $\sim 10\%$ of the light yield increase

3. Use of half of fibers (2 PMTs)

All tiles are BICRON, 5mm multiclad fiber spacing, wrapped in TETRATEC

Number of readout fibers	Relative light yield
All fibers	24.5
Half fibers	11.9

Use of 2 PMTs reduces the light for each PMT by 50%

4. Aluminization of the fiber ends

Fiber ends	Tile	Relative
		light
		yield
Razor Cut	TYVEK, ElJen scintillator, 1cm	14.1
	single clad fiber spacing	
Aluminized at GSFC		15.3
Razor Cut	TETRATEC, BICRON, 5 mm	24.5
	multiclad fiber spacing	
Mylar at the ends	" "	21.1
Razor cut	TYVEK, 1 cm multiclad fiber	18.1
	spacing	
Aluminized in FNL	‹‹ ‹‹	21.2

Conclusion – aluminization made at GSFC gives 5-7% of the light increase. Aluminization made in Fermilab, improves the light yield by $\sim 17\%$

5. Fiber cladding

All tiles are ElJen scintillator, 1cm fiber spacing, TYVEK wrapped

Fibers	Relative light yield
Single clad	14.1
Multiclad	17.8

Conclusion: cladding is important, gives $\sim 25\%$ of the light increase

6. Scintillator manufacturer

All tiles are 1cm multiclad fiber spacing, TYVEK wrapped

Scintillator	Relative light yield
BICRON	18.1
ElJen1	17.8

Conclusion: Difference is within the measurement errors, scintillators perform similarly

7. Other different designs

Tile	Tested feature	Relative
		light yield
TETRATEC	Light is transmitted to PMT	5.5
wrapped, BICRON	by clear fibers viewing from	

	the tile edge	
BICRON, TYVEK	Light is collected by WSF	13.2
wrapped	glued to both tile edges	
	without spacing	
BICRON, TYVEC	2 fibers in one groove	19.0 (to
wrapped, 1cm		compare
multiclad fiber		with 18.1 for
spacing		one fiber)
BICRON, TYVEK	Tile is made of 2 5mm thick	11.0
wrapped, 1cm	tiles, fibers are glued	
multiclad fiber	between them in grooves cut	
spacing	in one tile	

Design conclusion. It was found that the largest light yield will be provided by the following tile design:

- a) 5 mm fiber spacing
- b) TETRATEC as a wrapping material
- c) Fiber ends are aluminized by the technology developed at Fermilab
- d) Multicladding wave-shifting fibers are used
- e) Scintillator manufacturer (Bicron or ElJen) does not matter much

This design provides 50%-60% of the light increase compared with that obtained for BFEM tile design